Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


eISSN: 1643-3750

Published: 2019-05-26

Continuous Compressive Force Induces Differentiation of Osteoclasts with High Levels of Inorganic Dissolution

Rieko Matsuike, Kumiko Nakai, Hideki Tanaka, Manami Ozaki, Mai Kanda, Maki Nagasaki, Chika Shibata, Kotoe Mayahara, Natsuko Tanabe, Ryosuke Koshi, Akira Nakajima, Takayuki Kawato, Masao Maeno, Noriyoshi Shimizu, Mitsuru Motoyoshi

(Nihon University Graduate School of Dentistry, Tokyo, Japan)

Med Sci Monit 2019; 25:3902-3909

DOI: 10.12659/MSM.913674

BACKGROUND: Osteoclast precursor cells are constitutively differentiated into mature osteoclasts on bone tissues. We previously reported that the continuous stimulation of RAW264.7 precursor cells with compressive force induces the formation of multinucleated giant cells via receptor activator of nuclear factor kappaB (RANK)-RANK ligand (RANKL) signaling. Here, we examined the bone resorptive function of multinucleated osteoclasts induced by continuous compressive force.
MATERIAL AND METHODS: Cells were continuously stimulated with 0.3, 0.6, and 1.1 g/cm² compressive force created by increasing the amount of the culture solution in the presence of RANKL. Actin ring organization was evaluated by fluorescence microscopy. mRNA expression of genes encoding osteoclastic bone resorption-related enzymes was examined by quantitative real-time reverse transcription-polymerase chain reaction. Mineral resorption was evaluated using calcium phosphate-coated plates.
RESULTS: Multinucleated osteoclast-like cells with actin rings were observed for all three magnitudes of compressive force, and the area of actin rings increased as a function of the applied force. Carbonic anhydrase II expression as well as calcium elution from the calcium phosphate plate was markedly higher after stimulation with 0.6 and 1.1 g/cm² force than 0.3 g/cm². Matrix metalloproteinase-9 expression decreased and cathepsin K expression increased slightly by the continuous application of compressive force.
CONCLUSIONS: Our study demonstrated that multinucleated osteoclast-like cells induced by the stimulation of RAW264.7 cells with continuous compressive force exhibit high dissolution of the inorganic phase of bone by upregulating carbonic anhydrase II expression and actin ring formation. These findings improve our understanding of the role of mechanical load in bone remodeling.

Keywords: Bone Resorption, Carbonic Anhydrase II, cathepsin K, Matrix Metalloproteinase 9, Osteoclasts, RANK Ligand

Related Articles (0)

Coming Soon...

Published: 2019-05-25

Clinical Significance of TRMT6 in Hepatocellular Carcinoma: A Bioinformatics-Based Study

Yang Wang, Qiao Huang, Tong Deng, Bing-Hui Li, Xue-Qun Ren

Med Sci Monit 2019; 25:3894-3901

DOI: 10.12659/MSM.913556

Published: 2019-05-25

Renal Sympathetic Denervation Improves Outcomes in a Canine Myocardial Infarction Model

Buajieer-guli Nasi-Er, Xue Lou, Yinling Zhang, Huaxin Sun, Xianhui Zhou, Yaodong Li, Qina Zhou, Jianghua Zhang, Baopeng Tang, Yanmei Lu

Med Sci Monit 2019; 25:3887-3893

DOI: 10.12659/MSM.914384