H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
12%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

Medical Science Monitor Basic Research
AmJCaseRep

Annals
ISI-Home

eISSN: 1643-3750

Get your full text copy in PDF

Potential Target Genes in the Development of Atrial Fibrillation: A Comprehensive Bioinformatics Analysis

Liang Liu, Yun Yu, Long-long Hu, Quan-bin Dong, Feng Hu, Ling-juan Zhu, Qian Liang, Ling-ling Yu, Hui-hui Bao, Xiao-shu Cheng

(Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland))

Med Sci Monit 2021; 27:e928366

DOI: 10.12659/MSM.928366


BACKGROUND: Atrial fibrillation (AF) is the most prevalent arrhythmia worldwide. Although it is not life-threatening, the accompanying rapid and irregular ventricular rate can lead to hemodynamic deterioration and obvious symptoms, especially the risk of cerebrovascular embolism. Our study aimed to identify novel and promising genes that could explain the underlying mechanism of AF development.
MATERIAL AND METHODS: Expression profiles GSE41177, GSE79768, and GSE14975 were acquired from the Gene Expression Omnibus Database. R software was used for identifying differentially expressed genes (DEGs), and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were subsequently performed. A protein-protein interaction network was constructed in Cytoscape software. Next, a least absolute shrinkage and selection operator (LASSO) model was constructed and receiver-operating characteristic curve analysis was conducted to assess the specificity and sensitivity of the key genes.
RESULTS: We obtained 204 DEGs from the datasets. The DEGs were mostly involved in immune response and cell communication. The primary pathways of the DEGs were related to the course or maintenance of autoimmune and chronic inflammatory diseases. The top 20 hub genes (high scores in cytoHubba) were selected in the PPI network. Finally, we identified 6 key genes (FCGR3B, CLEC10A, FPR2, IGSF6, S100A9, and S100A12) via the LASSO model.
CONCLUSIONS: We present 6 target genes that are potentially involved in the molecular mechanisms of AF development. In addition, these genes are likely to serve as potential therapeutic targets.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree