Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


eISSN: 1643-3750

Get your full text copy in PDF

Mixed Lineage Kinase Domain-Like Protein Promotes Human Monocyte Cell Adhesion to Human Umbilical Vein Endothelial Cells Via Upregulation of Intercellular Adhesion Molecule-1 Expression

Fen Cai, Jia-Li Wang, Yi-Lin Wu, Yan-Wei Hu, Qian Wang

(Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland))

Med Sci Monit 2020; 26:e924242

DOI: 10.12659/MSM.924242

BACKGROUND: Atherosclerosis is a progressive inflammatory disease that involves a variety of inflammatory and proinflammatory factors, including intercellular adhesion molecule (ICAM)-1. ICAM-1 plays an important role in atherosclerosis by promoting cell adhesion. Mixed lineage kinase domain-like (MLKL), a critical regulator of necroptotic cell death, is indicated to play an important role in atherosclerosis. This study investigated the effects of MLKL on ICAM-1 expression and cell adhesion, thus providing a new direction for the research of atherosclerosis pathogenesis.
MATERIAL AND METHODS: siRNA-MLKL and pcDNA-MLKL were designed, and the expression of MLKL and ICAM-1 were estimated by real-time polymerase chain reaction at the mRNA level and Western blotting at the protein level. The adhesion of human monocyte cells (THP-1) to human umbilical vein endothelial cells (HUVECs) was examined under immunofluorescence microscopy, and the ability of cell adhesion was evaluated by ImageJ software.
RESULTS: Overexpression of MLKL greatly enhanced ICAM-1 expression in HUVECs and the adherence of THP-1 cells to HUVECs. Knockdown of MLKL by siRNA dramatically inhibited the expression of ICAM-1 and the adherence of THP-1 cells to HUVECs. MLKL could promote THP-1 adhesion to HUVECs by activating ICAM-1 expression in HUVECs.
CONCLUSIONS: MLKL can promote THP-1 cell adhesion to HUVECs through up-regulation of ICAM-1 expression in HUVECs. Thus, MLKL might be a useful target for reducing adhesion of monocytes to endothelial cells and atherosclerosis.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree