H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
15%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

Medical Science Monitor Basic Research
AmJCaseRep

Annals
ISI-Home

eISSN: 1643-3750

Get your full text copy in PDF

Naringin Protects Against Interleukin 1β (IL-1β)-Induced Human Nucleus Pulposus Cells Degeneration via Downregulation Nuclear Factor kappa B (NF-κB) Pathway and p53 Expression

Gang Gao, Feng Chang, Ting Zhang, Xinhu Huang, Chen Yu, Zhaolin Hu, Mingming Ji, Yufen Duan

(Department of Spinal Minimally Invasive Surgery, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China (mainland))

Med Sci Monit 2019; 25:9963-9972

DOI: 10.12659/MSM.918597


BACKGROUND: Low back pain (LBP) is regarded as a frequent disease that causes disability. We aimed to explore the effect of naringin on intervertebral disc degeneration (IDD) in IL-1ß-induced human nucleus pulposus (NP) cells and its corresponding molecular mechanisms.
MATERIAL AND METHODS: Human NP cells were identified by toluidine blue and Safranin O staining. Cell viability was determined by MTT assay. The expression levels of matrix metalloproteinases (MMP-3, MMP-13, ADAMTS-4, ADAMTS-5, collagen II, aggrecan), inflammatory genes (tumor necrosis factor [TNF]-alpha, interleukin [IL]-6), kappa B kinase alpha (IkappaBalpha), p65 and p53 were determined by quantitative real-time polymerase chain reaction (qPCR) and western blotting. Immunofluorescence study was performed to detect the position and expression of p65 protein in IL-1ß-induced human NP cells.
RESULTS: Human NP cells were successfully separated from intervertebral disc tissue. We found that naringin could significantly reduce the expressions of matrix metalloproteinases (MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5) and inflammatory genes in IL-1ß-stimulated human NP cells, while collagen II and aggrecan were increased at mRNA and protein level. Immunofluorescence showed that naringin pretreatment decreased the p65 protein expression in the nucleus and suppressed the phosphorylation of IkappaBalpha and p65.
CONCLUSIONS: These results demonstrated that naringin could attenuate matrix metalloproteinase catabolism and inflammation in IL-1ß-treated human nucleus pulposus cells via downregulating NF-kappaB pathway and p53 expression, suggesting that naringin has the potential to prevent and treat IDD.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree