H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
12%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

Medical Science Monitor Basic Research
AmJCaseRep

Annals
ISI-Home

eISSN: 1643-3750

Get your full text copy in PDF

Fluid Shear Stress Suppresses Osteoclast Differentiation in RAW264.7 Cells through Extracellular Signal-Regulated Kinase 5 (ERK5) Signaling Pathway

Chongwen Ma, Bin Geng, Xiaohui Zhang, Rui Li, Xinxin Yang, Yayi Xia

(Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, China (mainland))

Med Sci Monit 2020; 26:e918370

DOI: 10.12659/MSM.918370


BACKGROUND: Although extracellular signal-regulated kinase 5 (ERK5) is known to be critical for osteoclast differentiation, there are few studies on how fluid shear stress (FSS) regulates osteoclast differentiation through the ERK5 signaling pathway. We examined the expression of nuclear factor of activated T cells c1 (NFATc1) in RAW264.7 cells and its downstream factors, including cathepsin K (CTSK), tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinases-9 (MMP-9) and their relationship with ERK5.
MATERIAL AND METHODS: RAW264.7 cells were treated with RANKL, XMD8-92 (ERK5 inhibitor), and then loaded onto 12 dyn/cm² FSS for 4 days. Endpoints measured were osteoclast differentiation, bone resorption, and TRAP activity. Cell viability was detected by using the Cell Counting Kit-8 (CCK-8) assay. Western blot was used to analyze protein expression of phosphorylated-ERK5 (p-ERK5), NFATc1, CTSK, TRAP, and MMP-9.
RESULTS: FSS inhibited osteoclast differentiation and expression of NFATc1, CTSK, TRAP, and MMP-9; cell viability was not affected. ERK5 expression increased by FSS but not by RANKL, and it was blocked by XMD8-92. Furthermore, FSS suppressed osteoclast differentiation in RAW264.7 cells through ERK5 pathway.
CONCLUSIONS: Our findings demonstrated that FSS inhibited osteoclast differentiation in RAW264.7 cells via the ERK5 pathway through reduced NFATc1 expression and its downstream factors MMP-9, CTSK, and TRAP.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree