H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
15%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo



eISSN: 1643-3750

Get your full text copy in PDF

Integrated Analysis Revealed Prognostic Factors for Prostate Cancer Patients

Hong Che, Yi Liu, Meng Zhang, Jialin Meng, Xingliang Feng, Jun Zhou, Chaozhao Liang

(Department of Cardiac Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland))

Med Sci Monit 2019; 25:9991-10007

DOI: 10.12659/MSM.918045


BACKGROUND: Prostate cancer (PCa) is one of the major causes of cancer-induced death among males. Here, we applied integrated bioinformatics analysis to identify key prognostic factors for PCa patients.
MATERIAL AND METHODS: The gene expression data were obtained from the UCSC Xena website. We calculated the differentially expressed genes between PCa tissues and normal controls. Pathway enrichment analyses found cell cycle-related pathways might play crucial roles during PCa tumorigenesis. The genes were assigned into 22 modules established via weighted gene co-expression network analysis (WGCNA).
RESULTS: The results indicated that the purple and red modules were obviously linked to the Gleason score, pathological N, pathological T, recurrence, and recurrence-free survival (RFS). In addition, Kaplan-Meier curve analysis found 8 modules were markedly correlated with RFS, serving as prognostic markers for PCa patients. Then, the hub genes in the most 2 critical modules (purple and red) were visualized by Cytoscape software. Pathway enrichment analyses confirmed the above findings that cell cycle-related pathways might play vital roles during PCa initiation and progression. Lastly, we randomly chose the PILRß (also termed PILRB) in the red module for clinical validation. The immunohistochemistry (IHC) results showed that PILRß was significantly increased in the high-risk PCa population compared with low-/middle-risk patients.
CONCLUSIONS: We used integrated bioinformatics approaches to identify hub genes that can serve as prognosis markers and potential treatment targets for PCa patients.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree