Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


eISSN: 1643-3750

Get your full text copy in PDF

Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Hypoxia and the Transforming Growth Factor beta 1 (TGFβ-1) and SMADs Pathway in a Mouse Model of Cirrhosis

Liting Zhang, Dan Zhou, Junfeng Li, Xiaoming Yan, Jun Zhu, Ping Xiao, Tuo Chen, Xiaodong Xie

(State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, China (mainland))

Med Sci Monit 2019; 25:7182-7190

DOI: 10.12659/MSM.916428

BACKGROUND: The role of bone marrow-derived mesenchymal stem cells (BM-MSCs) in liver fibrosis remains poorly understood. This study aimed to use a mouse model of carbon tetrachloride (CCL₄)-induced liver fibrosis to investigate the effects of BM-MSCs during liver hypoxia and the involvement of the transforming growth factor beta 1 (TGF-ß1) and SMADs pathway.
MATERIAL AND METHODS: Thirty C57BL/6 mice were randomly divided into the control group (n=10), the model group (n=10), and the BM-MSC-treated model group (n=10). In the model group, liver fibrosis was induced by intraperitoneal injection of CCl₄. BM-MSCs were transplanted after 12 weeks of CCl₄ treatment. The serum biochemical parameters and histological changes in the liver, using histochemical stains, were investigated. The expression of collagen type I (collagen I), alpha-smooth muscle actin (alpha-SMA), TGF-ß1, SMAD3, SMAD7, hypoxia-inducible factor 1 alpha (HIF-1alpha), and vascular endothelial grow factor (VEGF) were assessed by immunohistochemistry and quantitative real-time polymerase chain (RT-qPCR) reaction.
RESULTS: Treatment with BM-MSCs reduced the expression of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) compared with the model group, and reduced liver fibrosis determined histologically using hematoxylin and eosin (H&amp;E) and Masson’s trichrome staining compared with the model group. The area of liver fibrosis decreased after BM-MSCs treatment (p<0.05). Protein expression of HIF-1alpha and VEGF were decreased after BM-MSCs treatment (p<0.05). Transplantation of BM-MSCs reduced the mRNA expression of TGF-ß1, collagen I, alpha-SMA, and SMAD3 (p<0.05).
CONCLUSIONS: BM-MSC transplantation reduced CCl₄-induced murine liver fibrosis, indicating that in a hypoxic microenvironment, BM-MSCs may inhibit the TGFß-1/SMADs pathway.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree