Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


eISSN: 1643-3750

Get your full text copy in PDF

C-Terminal Binding Protein 1 Modulates Cellular Redox via Feedback Regulation of MPC1 and MPC2 in Melanoma Cells

Yu Deng, Hong Li, Xinyi Yin, Hongbing Liu, Jing Liu, Dongjie Guo, Zheng Shi

(School of Medicine, Chengdu University, Chengdu, Sichuan, CO, China (mainland))

Med Sci Monit 2018; 24:7614-7624

DOI: 10.12659/MSM.912735

BACKGROUND: Recent studies have illustrated that the transcription co-repressor, C-terminal binding protein 1 (CtBP1), links the metabolic alterations to transcription controls in proliferation, EMT, genome stability, metabolism, and lifespan, but whether CtBP1 affects the cellular redox homeostasis is unexplored. This study was designed to investigate the mechanism of CtBP1-mediated transcription repression that contributes to the metabolic reprogramming.
MATERIAL AND METHODS: Knockdown of CtBP1 in both mouse MEF cells and human melanoma cells changed cell redox homeostasis. Further, chromatin immunoprecipitation (ChIP) and luciferase reporter assay were performed for identification of CtBP1 downstream targets, pyruvate carrier 1 and 2 genes (MPC1 and MPC2), which contribute to redox homeostasis and are transcriptionally regulated by CtBP1. Moreover, blockage of the cellular NADH level with the glycolysis inhibitor 2-Deoxy-D-Glucose (2-DG) rescued MPC1 and MPC2 expression. MTT assay and scratch assay were performed to investigate the effect of MPC1 and MPC2 expression on malignant properties of melanoma cells.
RESULTS: The data demonstrated that CtBP1 directly bound to the promoters of MPC1 and MPC2 and transcriptionally repressed them, leading to increased levels of free NADH in the cytosol and nucleus, thus positively feeding back CtBP1’s functions. Consequently, restoring MPC1 and MPC2 in human tumor cells decreases free NADH and inhibits melanoma cell proliferation and migration.
CONCLUSIONS: Our data indicate that MPC1 and MPC2 are principal mediators that link CtBP1-mediated transcription regulation to NADH production. The discovery of CtBP1 as an NADH regulator in addition to being an NADH sensor shows that CtBP1 is at the center of tumor metabolism and transcription control.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree