H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
12%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

Medical Science Monitor Basic Research
AmJCaseRep

Annals
ISI-Home

eISSN: 1643-3750

Get your full text copy in PDF

Propofol Inhibits HeLa Cells by Impairing Autophagic Flux via AMP-Activated Protein Kinase (AMPK) Activation and Endoplasmic Reticulum Stress Regulated by Calcium

Xi Chen, Kai Li, Guoqing Zhao

(Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China (mainland))

Med Sci Monit 2018; 24: LBR2339-2349

DOI: 10.12659/MSM.909144


BACKGROUND: Propofol has antitumor effects against various cancers. However, the mechanism of action of propofol in HeLa human cervical cancer cells has not been elucidated.
MATERIAL AND METHODS: We treated HeLa human cervical cancer cells with different concentrations of propofol. Cell viability was evaluated with Cell Counting Kit-8 and apoptosis was analyzed by annexin V-fluorescein isothiocyanate and propidium iodide staining and flow cytometry. Autophagosome formation was evaluated based on microtubule-associated protein light chain (LC)3 conversion and light chain 3 puncta formation. Autophagosome clearance was assessed according to p62 protein level and autolysosome generation.
RESULTS: We found that propofol decreased cell viability and increased autophagosome generation in HeLa cells. Autophagosome formation was evaluated based on LC3 conversion and LC3 puncta formation. Autophagosome clearance was assessed according to p62 protein level. The AMPK/mTOR signaling pathway was found to be activated in propofol-induced autophagosome accumulation. Fluorescence analysis using LysoTracker dye revealed that propofol blocked autophagosome–lysosome fusion. Administration of rapamycin increased autophagosome clearance in propofol-treated HeLa cells. Additionally, propofol induced endoplasmic reticulum (ER) stress and disrupted intracellular Ca2+ balance, thereby enhancing autophagosome accumulation. Suppressing ER stress by treatment with tauroursodeoxycholic acid (TUDCA) enhanced these effects, suggesting that the cytotoxicity of propofol is related to induction of ER stress.
CONCLUSIONS: This study is the first to provide evidence that propofol-mediated autophagy regulation is an underlying part of the mechanism by which propofol regulates HeLa cells progression.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree