H-Index
75
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
21%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo



eISSN: 1643-3750

Get your full text copy in PDF

The Effects of Dracocephalum Heterophyllum Benth Flavonoid on Hypertrophic Cardiomyocytes Induced by Angiotensin II in Rats

Hong Jiang, Chen Zhang, Wen He

(School of Public Health, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland))

Med Sci Monit 2018; 24:6322-6330

DOI: 10.12659/MSM.908912


BACKGROUND: Dracocephalum heterophyllum Benth flavonoid (DHBF) is a Tibetan and Uighur traditional medicine used to treat various disorders such as hypertension, lung heat, cough, and bronchitis; it has good antioxidant activity. Previous studies have shown that DHBF can reduce blood pressure in renovascular hypertensive rats, improve left ventricular systolic and diastolic function, and improve myocardial contractility. Therefore, we aimed to study the effect of DHBF on cardiomyocyte hypertrophy in cultured cells.
MATERIAL AND METHODS: Neonatal rat cardiomyocytes were cultured, and hypertrophy was induced by angiotensin II (Ang II), with or without varying concentrations of the DHBF extract. Cell Counting Kit-8 assay was used to assess cell viability, RT-qPCR was used to determine mRNA levels, confocal laser scanning microscopy was used to measure cell surface area and intracellular Ca2+ concentrations ([Ca2+]i), and colorimetric assays were used to assess nitric oxide (NO) levels and nitric oxide synthase (NOS) activity.
RESULTS: Ang II treatment of cardiomyocytes reduced cell viability to ~75% that of controls. Ang II treatment also increased cell surface area; increased mRNA expression of c-jun, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC); increased [Ca2+]i; and reduced NOS activity and NO production. DHBF treatment could reverse these effects in a concentration-dependent manner.
CONCLUSIONS: These results showed that DHBF can ameliorate cardiomyocyte hypertrophy induced by Ang II, as indicated by the downregulation of cardiac hypertrophy genes (ANP, BNP, and β-MHC) and reduction in cell surface area. The mechanism may be related to NO release and [Ca2+]I regulation.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree