H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
12%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

Medical Science Monitor Basic Research
AmJCaseRep

Annals
ISI-Home

eISSN: 1643-3750

Get your full text copy in PDF

The Effects of a Pulsed Electromagnetic Field on the Proliferation and Osteogenic Differentiation of Human Adipose-Derived Stem Cells

Yukun Yin, Ping Chen, Qiang Yu, Yan Peng, ZeHao Zhu, Jing Tian

(Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, China (mainland))

Med Sci Monit 2018; 24: LBR3274-3282

DOI: 10.12659/MSM.907815


BACKGROUND: A low frequency pulsed electromagnetic field (PEMF) has been confirmed to play an important role in promoting the osteogenic differentiation of human bone marrow stem cells (BMSCs). Adipose-derived stem cells (ASCs) possess some attractive characteristics for clinical application compared to BMSCs, such as abundant stem cells from lipoaspirates, faster growth, less discomfort and morbidity during surgery. ASCs can become adipocytes, osteoblasts, chondrocytes, myocytes, neurocytes, and other cell types. Thus, ASCs might be a good alternative in clinical work involving treatment with PEMF.
MATERIAL AND METHODS: Human ASCs (hASCs)were divided into a control group (without PEMF exposure) and an experimental group (PEMF for two hours per day). We examined the effect of PEMF on promoting cell proliferation and osteogenic differentiation from several aspects: CCK-8 proliferation assay, RNA extraction, qRT-PCR detection, western blotting, and immunofluorescence staining experiments.
RESULTS: PEMF could promote cell proliferation of human ASCs (hASCs) at an early stage as determined by CCK-8 assay. A specific intensity (1 mT) and frequency (50 Hz) of PEMF promoted osteogenic differentiation in hASCs in alkaline phosphatase (ALP) staining experiments. In addition, bone-related gene expression increased after two weeks of PEMF exposure, the protein expression of OPN, OCN, and RUNX-2 also increased after a longer period (three weeks) of PEMF treatment as determined by western blotting and immunofluorescence staining.
CONCLUSIONS: We found for the first time that PMEF has a role in stimulating cell proliferation of hASCs at an early period, subsequently promoting bone-related gene expression and inducing the expression of related proteins to stimulate osteogenic differentiation.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree