Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


eISSN: 1643-3750

Get your full text copy in PDF

Downregulation of lncRNA X Inactive Specific Transcript (XIST) Suppresses Cell Proliferation and Enhances Radiosensitivity by Upregulating mir-29c in Nasopharyngeal Carcinoma Cells

Qian Han, Liang Li, Hengpo Liang, Yaqiong Li, Jiacun Xie, Zhibin Wang

(Department of Radiotherapy, The People’s Hospital of Zhengzhou University (Henan Provincial People’s Hospital), Zhengzhou, Henan, China (mainland))

Med Sci Monit 2017; 23:4798-4807

DOI: 10.12659/MSM.905370

BACKGROUND: LncRNA X inactive specific transcript (XIST) was reported to function as an oncogene in nasopharyngeal carcinoma cells (NPC) by sponging miR-34a-5p. However, the role of XIST in modulating the radiosensitivity of NPC cells and its mechanism still remain undefined.
MATERIAL AND METHODS: The expressions of XIST and miR-29c in NPC cells were evaluated by qRT-PCR. CNE1 and CNE2 cells were transfected with si-XIST, pcDNA-XIST, miR-29c mimics, anti-miR-29c, or respective controls by Lipofectamine 2000. The effects of XIST knockdown and miR-29c overexpression on cell proliferation, survival fraction, and γ-H2AX expression were investigated by CCK-8 assay, colony formation assay, immunofluorescence, and Western blot, respectively. Luciferase reporter assay and qRT-PCR analysis were performed to confirm whether XIST interacts with miR-29c and regulates its expression.
RESULTS: XIST was upregulated and miR-29c was downregulated in NPC cells. The expressions of XIST and miR-29c changed reversely in response to irradiation. Knockdown of XIST and miR-29c overexpression both resulted in a dramatic suppression of cell proliferation, a marked enhancement of radiosensitivity, and an obvious increase of γ-H2AX foci formation in NPC cells. Luciferase reporter assay and qRT-PCR analysis demonstrated that XIST interacts with miR-29c and negatively regulates its expression. Moreover, miR-29c inhibition abrogated XIST knockdown-induced cell proliferation inhibition and radiosensitivity increase in NPC cells.
CONCLUSIONS: XIST knockdown suppressed cell proliferation and enhanced radiosensitivity of NPC cells by upregulating miR-29c, providing a novel therapeutic target to improve radiotherapy efficiency for patients with NPC.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree