H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
15%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo



eISSN: 1643-3750

Get your full text copy in PDF

Fucoxanthin and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Synergistically Promotes Apoptosis of Human Cervical Cancer Cells by Targeting PI3K/Akt/NF-κB Signaling Pathway

Ye Jin, Shuang Qiu, Na Shao, Jianhua Zheng

(Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland))

Med Sci Monit 2018; 24:11-18

DOI: 10.12659/MSM.905360


BACKGROUND: Fucoxanthin is a carotenoid present in the chloroplasts of brown seaweeds. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that selectively induces apoptosis in many tumor cells and is an attractive candidate for antitumor therapies.
MATERIAL AND METHODS: After human cervical cancer cell lines HeLa, SiHa, and CaSki were treated with fucoxanthin or TRAIL. Cell viability was determined by 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2-tetrazolium 5-carboxanilide (XTT) method. Apoptosis was measured by flow cytometry (FCM). Protein expression of phosphatidylinositol 3 kinase (PI3K), protein kinase B (Akt), phosphated Akt (p-Akt), NF-κB nuclear factor-k-gene binding (NF-κB). Phosphated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (p-IκBα), was measured by Western blot analysis. mRNA expression of Bax and Bcl2 was measured by RNA preparation and quantitative reverse transcription polymerase chain reaction (RT-PCR).
RESULTS: In the present study, the effectiveness in terms of apoptosis was as follows: TRAIL plus fucoxanthin>fucoxanthin>TRAIL, indicating the combination of fucoxanthin and TRAIL, produced a strong synergistic effect on apoptosis in human cervical cancer cells. Additionally, we found that upstream signaling PI3K/Akt and NF-κB pathways-mediated cell apoptosis was activated by TRAIL and suppressed by fucoxanthin. By using PI3K and NF-κB inhibitors LY49002 and PDTC, we found that fucoxanthin- or TRAIL-induced apoptosis of human cervical cancer cells was obviously down-regulated.
CONCLUSIONS: Taken together, these findings suggest that fucoxanthin and TRAIL increased the apoptosis in human cervical cancer cells by targeting the PI3K/Akt/NF-κB signaling pathway.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree