H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
12%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

Medical Science Monitor Basic Research
AmJCaseRep

Annals
ISI-Home

eISSN: 1643-3750

Get your full text copy in PDF

17β-Estradiol Promotes Angiogenesis of Rat Cardiac Microvascular Endothelial Cells In Vitro

HaiTao Liu, Yin Tao, Mai Chen, Jin Yu, Wei-Jie Li, Ling Tao, Yan Li, Fei Li

(Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China (mainland))

Med Sci Monit 2018; 24: LBR2489-2496

DOI: 10.12659/MSM.903344


BACKGROUND: The formation of new blood vessels, known as angiogenesis, is critical for recovery from ischemic heart disease, and estrogen is considered an important factor in this process. Here, we investigated the effects of 17β-estradiol (17β-E2) on proliferation and migration of cardiac microvascular endothelial cells (CMECs) in vitro.
MATERIAL AND METHODS: Rat CMECs were isolated and cultured with 17β-E2 (0.001–1 µmol/l) in the absence or presence of the estrogen antagonist tamoxifen. Then, the expression level of estrogen receptor alpha was evaluated by using immunofluorescence assay, RT-PCR, and Western blot. Cell proliferation was detected by methyl thiazolyl tetrazolium analysis and the cell migration was verified by a scraping assay and quantified by a Transwell chamber assay. CMEC differentiation was examined using a tube formation assay. Vascular endothelial growth factor (VEGF) secretion was detected by enzyme-linked immunosorbent assay.
RESULTS: CMECs exhibited homogenous, polygonal, exhibited contact inhibition, and had characteristically ovoid nuclei with 1 or 2 nucleoli, and the cytoplasm exhibited red fluorescence after staining for von Willebrand factor. 17β-E2 treatment upregulated estrogen receptor alpha expression in CMECs. 17β-E2 treatment significantly promoted the proliferation, migration, tubular structure formation, and VEGF secretion in CMECs. The maximal proliferation occurred in the presence of 0.01 µmol/l 17β-E2. Furthermore, estrogen and VEGF were found to synergistically stimulate angiogenesis.
CONCLUSIONS: Our data show that 17β-E2 promotes angiogenesis in vitro and suggests that estrogen treatment as a novel therapeutic modality in the management of arterial insufficiency.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree