Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


eISSN: 1643-3750

Get your full text copy in PDF

Calreticulin Promotes Proliferation and Migration But Inhibits Apoptosis in Schwann Cells

Gui Huang, Zhulei Sun, Jiang Wu, Shaofeng Shui, Xinwei Han, Dong Guo, Tengfei Li

(Department of Pathology, Huaihe Hospital, Henan University, Kaifeng, Henan, China (mainland))

Med Sci Monit 2016; 22:4516-4522

DOI: 10.12659/MSM.900956

BACKGROUND: Previous studies indicated that calreticulin (CRT) regulated various biological processes. This study was aimed to investigate the function of CRT in Schwann cells (SCs).
MATERIAL AND METHODS: SCs were separated from sciatic nerves of mice and were transfected with pcDNA3.1-CRT (pc-CRT), small interfering RNA targets CRT (siCRT), or their corresponding negative controls. The expression of CRT was determined by quantitative reverse transcription PCR (qRT-PCR) and Western blot analysis. Then, cell proliferation, migration, and apoptosis were measured by 3-(4, 5-dimethylhiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, modified 2-chamber migration assay, and flow cytometry, respectively. Finally, the phosphorylation levels of key kinases in the phosphatidylinositol-3-kinase (PI3K)/AKT and the extracellular signal-regulated kinase/ribosomal S6 kinase 2 (ERK/S6) pathways were detected by Western blot analysis.
RESULTS: Overexpression of CRT remarkably increased viability (P<0.05, P<0.01 or P<0.001) and migration (P<0.001), but inhibited apoptosis (P<0.05). The CRT-knockdown showed the inverse impacts on viability (P<0.05 or P<0.001), migration (P<0.001), and apoptosis (P<0.001). Additionally, the phosphorylation levels of AKT (Thr308 and Ser473), ERK, and S6 were all up-regulated in CRT-overexpressed cells (P<0.001), and were down-regulated in CRT-knockdown cells (P<0.05, P<0.01 or P<0.001).
CONCLUSIONS: Overexpression of CRT in SCs promoted cell proliferation and migration but suppressed cell apoptosis. The PI3K/AKT and ERK/S6 pathways might be involved in the functional effects of CRT on SCs.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree