Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


eISSN: 1643-3750

Get your full text copy in PDF

MiR-27a Modulates Radiosensitivity of Triple-Negative Breast Cancer (TNBC) Cells by Targeting CDC27

Yong-qiang Ren, Fengkui Fu, Jianjun Han

(Clinical Laboratory, The Central Hospital of Yishui, Linyi, Shandong, China (mainland))

Med Sci Monit 2015; 21:1297-1303

DOI: 10.12659/MSM.893974

BACKGROUND: MiR-27a is significantly overexpressed in triple-negative breast cancer (TNBC). However, the exact biological function of MiR-27a in TNBC is not fully understood. In this study, we verified miR-27a expression in TNBC cells and explored how its overexpression modulates radiosensitivity of the cells.
MATERIAL AND METHODS: qRT-PCR analysis was performed to study miR-27a expression in TNBC lines MDA-MB-435 and MDA-MB-231 and in normal human breast epithelial cell line MCF10A. Dual luciferase assay was performed to verify a putative downstream target of miR-27a, CDC27. CCK-8 assay was used to assess the influence of miR-27a-CDC27 axis on cell proliferation under irradiation (IR) treatment.
RESULTS: We confirmed significantly higher miR-27a expression in 2 TNBC cell lines – MDA-MB-435 and MDA-MB-231 – than in human breast epithelial cell line MCF10A. miR-27a could modulate proliferation and radiosensitivity of TNBC cells. CDC-27 is a direct target of miR-27a and its downregulation conferred increased radioresistance of the cells.
CONCLUSIONS: The miR-27a-CDC27 axis might play an important role in modulating response to radiotherapy in TNBC cells. Testing miR-27a expression might be a useful way to identify a subgroup of patients who will benefit from an IR-based therapeutic approach.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree