Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

08 October 2014 : Original article  

Pioglitazone Improves Potassium Channel Remodeling Induced by Angiotensin II in Atrial Myocytes

Jun GuBEF, Wei HuADG, Xu LiuACDG

DOI: 10.12659/MSMBR.892450

Med Sci Monit Basic Res 2014; 20:153-160

Abstract

BACKGROUND: It has been demonstrated that atrial electrical remodeling contributes toward atrial fibrillation (AF) maintenance, and that angiotensin II (AngII) is involved in the pathogenesis of atrial electrical remodeling. Peroxisome proliferator activated receptor-γ (PPAR-γ) agonists have been shown to inhibit atrial electrical remodeling, but the underlying mechanisms are poorly understood. In the present study we investigated the regulating effects of PPAR-g agonist on AngII-induced potassium channel remodeling in atrial myocytes.

MATERIAL AND METHODS: Whole-cell patch-clamp technique was used to record transient outward potassium current (Ito), ultra-rapid delayed rectifier potassium (Ikur), and inward rectifier potassium current (Ik1). Real-time PCR was used to assess potassium channel subunit mRNA expression.

RESULTS: Compared with the control group, AngII reduced Ito and Ikur current density as well as amplified Ik1 current density, which were partially prevented by pioglitazone. Furthermore, pioglitazone alleviated the downregulation of Ito subunit (Kv 4.2) and Ikur subunit (Kv 1.5), as well as the upregulation of Ik1 subunit (Kir 2.1 and Kir 2.2) mRNA expression stimulated by AngII.

CONCLUSIONS: These results suggest that pioglitazone exhibits a beneficial effect on AngII-induced potassium channel remodeling. PPAR-γ agonists may be potentially effective up-stream therapies for AF.

Keywords: Atrial Remodeling - drug effects, Angiotensin II - pharmacology, Cell Line, Electrophysiological Phenomena - drug effects, Gene Expression Regulation - drug effects, Heart Atria - cytology, Ion Channel Gating - drug effects, Myocytes, Cardiac - physiology, Potassium Channels - metabolism, RNA, Messenger - metabolism, Real-Time Polymerase Chain Reaction, Thiazolidinediones - pharmacology

Add Comment 0 Comments

In Press

Clinical Research  

Questionnaire-Based Study of 392 Women in Abbottabad, Pakistan, to Evaluate the Types of Cosmetic Products ...

Med Sci Monit Basic Res In Press; DOI:  

Most Viewed Current Articles

15 Jun 2022 : Clinical Research  

Evaluation of Apical Leakage After Root Canal Obturation with Glass Ionomer, Resin, and Zinc Oxide Eugenol ...

DOI :10.12659/MSMBR.936675

Med Sci Monit Basic Res 2022; 28:e936675

07 Jul 2022 : Laboratory Research  

Cytotoxicity, Apoptosis, Migration Inhibition, and Autophagy-Induced by Crude Ricin from Ricinus communis S...

DOI :10.12659/MSMBR.936683

Med Sci Monit Basic Res 2022; 28:e936683

01 Jun 2022 : Laboratory Research  

Comparison of Sealing Abilities Among Zinc Oxide Eugenol Root-Canal Filling Cement, Antibacterial Biocerami...

DOI :10.12659/MSMBR.936319

Med Sci Monit Basic Res 2022; 28:e936319

17 Jan 2022 : Clinical Research  

Anodal Transcranial Direct Current Stimulation (tDCS) Over the Primary Motor Cortex (M1) Enhances Motor Res...

DOI :10.12659/MSMBR.934180

Med Sci Monit Basic Res 2022; 28:e934180

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416