H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
15%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

Medical Science Monitor Basic Research
AmJCaseRep

Annals
ISI-Home

eISSN: 1643-3750

Get your full text copy in PDF

Atrial Fibrillation Electrical Remodelling via Ablation of the Epicardial Neural Networks and Suprathreshold Stimulation of Vagosympathetic Nerve

Yanmei Lu, Juan Sun, Xianhui Zhou, Qinquan Sun, Shuai Sun, Baopeng Tang

(Department of Cardiology, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China (mainland))

Med Sci Monit 2015; 21:82-89

DOI: 10.12659/MSM.892156


Background: Numerous studies have shown that the cardiac autonomic nervous system (CANS) is involved in the occurrence and persistence of atrial fibrillation (AF). The CANS is commonly considered to consist of the extrinsic and intrinsic autonomic nerves. The influence of exogenous and endogenous nerve stimulation plexus ablation on pulmonary vein sleeves and atrial myocardium provides important information in understanding the occurrence and persistence of AF. Vagosympathetic nerve stimulation and epicardial neural networks are important participants in atrial electrical remodelling (AER). Elucidation of the changes in the electrophysiological indicators of the atrial and pulmonary veins caused by epicardial neural network ablation and autonomic nerve stimulation may provide a theoretical basis for the clinical treatment of AF.
Material and Methods: A total of 13 beagle dogs were randomly divided into 2 groups: the control group (n=6), which was treated with a simple rapid atrial pacing (RAP) for 6 h, and the experimental group (n=7), which was treated with RAP+vagus nerve stimulation (VNS) for 6 h. Both groups were treated with epicardial ganglia plexus (GP) ablation after 6 h. We measured the monophasic action potential (MAP), various parts of the effective refractory period (ERP), and AF induction rate before and after pacing or ablation.
Results: With the extension of the pacing time, the atrial MAP and ERP of the 2 groups shortened and returned to normal after ablation plexus. After GP ablation, the atrial AF-induced rate did not decrease significantly compared with that of the pulmonary vein.
Conclusions: Vagus nerve threshold stimulation exacerbated the deterioration of electrical remodelling, whereas the epicardial neural network ablation blocked or reversed the AER.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree