Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


eISSN: 1643-3750

Get your full text copy in PDF

SH3GL2 gene participates in MEK-ERK signal pathway partly by regulating EGFR in the laryngeal carcinoma cell line Hep2

Chao Shang, Yan Guo, Shuang Fu, Weineng Fu, Kailai Sun

Med Sci Monit 2010; 16(6): BR168-173

ID: 880604

Background: The human Src homology 3 (SH3) domain GRB2-like 2 (SH3GL2) gene, a novel tumor suppressor gene in laryngeal squamous cell carcinoma (LSCC), induces apoptosis of tumor cells by regulating intra-cellular signal transduction networks. The objective of this study was to investigate the molecular mechanism of SH3GL2 in laryngeal carcinogenesis.
Material/Methods: RNA interference inhibited the expression of level of SH3GL, and RT-PCR and Western blotting were applied to evaluate the expression level of SH3GL2 after RNA interference. After RNA interference, flow cytometry and 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay were used to detect the biological effects, and Western blotting was used to determine the expression of EGFR and phosphorylated ERK1/2. The Hep2 cells transfected with siRNA-SH3GL2 were treated by U0126 (selective MEK1/2 Inhibitor), and the phosphorylated ERK1/2 proteins were detected by Western blotting; cell proliferation and apoptosis were detected subsequently.
Results: Our results show that the expression level of epidermal growth factor receptor (EGFR) and phosphorylated extracellular signal-regulated kinase1/2 (ERK1/2) were up-regulated after down-regulation of SH3GL2. Additionally, SH3GL2 promoted apoptosis while decreasing cell proliferation. However, if ERK1/2 was inhibited by U0126, the apoptosis rate increased and proliferation decreased inversely.
Conclusions:    SH3GL2 participates in the regulation of apoptosis through the MEK-ERK signal pathway by adjusting EGFR in the laryngeal carcinoma cell line Hep2.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree