Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


eISSN: 1643-3750

Get your full text copy in PDF

Combining "open-lung" ventilation and arteriovenous extracorporeal lung assist: influence of different tidal volumes on gas exchange in experimental lung failure

Ralf M Muellenbach, Markus Kredel, Julian Kuestermann, Michael Klingelhoefer, Frank Schuster, Christian Wunder, Peter Kranke, Norbert Roewer, Joerg Brederlau

Med Sci Monit 2009; 15(8): BR213-220

ID: 878131

Background: Although low-tidal ventilation may reduce mortality in acute respiratory distress syndrome (ARDS), it can also result in severe respiratory acidosis and lung derecruitment. This study tested the hypothesis that combining "open-lung" ventilation and arteriovenous extracorporeal lung assist (av-ECLA) allows for maximal tidal volume (VT) reduction without the development of decompensated respiratory acidosis and impairment of oxygenation.
Material and Method: After induction of ARDS in eight female pigs (56.1+/-3.2 kg), lung recruitment was performed and positive end-expiratory pressure was set 3 cmH2O above the lower inflection point of the pressure-volume curve. All animals were ventilated in the pressure-controlled ventilation mode (PCV) with VTs ranging from 0-8 ml/kg. At each VT, gas exchange and hemodynamic measurements were obtained with the av-ECLA circuit clamped and declamped. With each declamping, the gas flow through the membrane lung was set to 10 l of oxygen/min. The respiratory rate was adjusted to maintain normocapnia, but limited to 40/min.
Results: After lung recruitment, oxygenation remained significantly improved although VTs were minimized to 0 ml/kg (p<0.05). PaO2 was significantly improved during PCV and av-ECLA compared with PCV alone at VTs <4 ml/kg (p<0.05). With VT <6 ml/kg, severe acidosis could only be avoided if PCV was combined with av-ECLA.
Conclusions: Due to sufficient CO2 elimination during av-ECLA, the VTs could be reduced to 0-2 ml/kg without the risk of decompensated respiratory acidosis. It was also shown that the "open-lung" strategy chosen was associated with sustained improvements in oxygenation, even though VTs were minimized.

Keywords: Swine, Tidal Volume - physiology, Respiration, Artificial - methods, Pulmonary Ventilation - physiology, Pulmonary Gas Exchange - physiology, Partial Pressure, Oxygen - metabolism, Lung Diseases - physiopathology, Hemodynamics, Carbon Dioxide - metabolism, Animals, Time Factors

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree