H-Index
75
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
21%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo



eISSN: 1643-3750

Get your full text copy in PDF

Atrial fibrillation and electrical remodeling: the potential role of inflammation and oxidative stress

Panagiotis Korantzopoulos, Theofilos Kolettis, Kostas Siogas, John Goudevenos

Med Sci Monit 2003; 9(9): RA225-229

ID: 13210


Atrial fibrillation (AF) represents the most common arrhythmia encountered in clinical practice. The pathophysiology of AF is complex, but in most cases it may be caused by multiple random re-entering wavelets. As generally known, the development of AF leads to electrophysiological and cellular changes in the atria that tend to sustain AF, a process known as electrical remodeling. In addition, it has been proposed that electrical remodeling contributes to the high incidence of early recurrence of AF after cardioversion. The principal characteristics of this process are the shortening of the refractory period with increased dispersion, the loss of rate adaptation, and the reduction of atrial conductivity. On the molecular level, calcium accumulation in myocytes seems to trigger electrophysiological changes leading to reduction in the intensity of L-type calcium current. Currently, the role of inflammation and oxidative stress on electrical remodeling is under investigation. C-reactive protein (CRP), a major inflammatory marker, has been found to be increased in both persistent and paroxysmal AF. Additionally, CRP may have prognostic significance regarding successful cardioversion of AF, and may predict recurrences of arrhythmia. On the other hand, it has been demonstrated that increased oxidative damage occurs in the atria of AF patients and may contribute to electrical remodeling. Interestingly, a prodromal antioxidant intervention study showed beneficial effects from vitamin C on incidence of postoperative AF. The role of inflammation and oxidative stress in AF deserves further study, since amelioration of atrial electrical remodeling by conventional antiarrhythmics has been proved ineffective.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree