Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


eISSN: 1643-3750

Get your full text copy in PDF

Protective effects of green tea catechins on cerebral ischemic damage

Motohisa Suzuki, Masaki Tabuchi, Masahiko Ikeda, Keizo Umegaki, Takako Tomita

Med Sci Monit 2004; 10(6): BR166-174

ID: 11679

Background:Green tea catechins possess potent antioxidative properties, and the preventive effects against various oxidative diseases have been reported. The purpose of this study is to examine preventive and protective effects of green tea catechins on various deteriorative processes following stroke.Material/Methods: Male Wistar rats were given ad libitum water with or without 0.25 and 0.5% tea catechin extract for 5 days prior to the operation and during the experiment. Right middle cerebral artery was occluded for 2 h, then reperfused for 22 h. Brain slices were stained with triphenyltetrazolim chloride to assess infarct area. Concentrations of plasma EGCg, and serum NOx were analyzed by HPLC. Detection of iNOS expression, neutrophil infiltration and peroxynitrite formation in the penumbra was performed by immunostain. Neurologic deficit was scored by posture reflex.Results: Tea catechins dose-dependently reduced the brain infarct area and volume. Infarct volume was inversely correlated with plasma EGCg concentration. Dark staining for iNOS, neutrophils and peroxynitrite were observed in vessel wall of small arteries in control ischemic hemisphere, while in catechins (0.5%)-treated rats iNOS was detected slightly, and staining for neutrophils and peroxynitrite was not seen. Catechin ingestion blocked a 3-fold increase in serum NOx concentration in the jugular vein, and also reduced by 35% a 2-fold increase of plasma lipid peroxide level seen in control rats after reperfusion. Neurologic deficits were significantly alleviated by 0.5% catechin ingestion.Conclusions: Daily intake of green tea catechins efficiently protects the penumbra from irreversible damage due to cerebral ischemia, and consequent neurologic deficits.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree