Logo Medical Science Monitor

Call: +1.631.470.9640
Mon - Fri 10:00 am - 02:00 pm EST

Contact Us

Logo Medical Science Monitor Logo Medical Science Monitor Logo Medical Science Monitor

24 September 2021 : Database Analysis

[In Press] A Statistical Prediction Model for Survival After Kidney Transplantation from Deceased Donors

Jia-shan Pan1AE, Yi-ding Chen1BC, Han-dong Ding1B, Tian-chi Lan1B, Fei Zhang1B, Jin-biao Zhong1A, Gui-yi Liao1AF

DOI: 10.12659/MSM.933559

Med Sci Monit In Press; DOI: 10.12659/MSM.933559  

Available online: 2021-09-24, In Press, Corrected Proof

Publication in the "In-Press" formula aims at speeding up the public availability of the pending manuscript while waiting for the final publication. The assigned DOI number is active and citable. The availability of the article in the Medline, PubMed and PMC databases as well as Web of Science will be obtained after the final publication according to the journal schedule


In an environment of limited kidney donation resources, patient recovery and survival after kidney transplantation (KT) are highly important. We used pre-operative data of kidney recipients to build a statistical model for predicting survivability after kidney transplantation.
A dataset was constructed from a pool of patients who received a first KT in our hospital. For allogeneic transplantation, all donated kidneys were collected from deceased donors. Logistic regression analysis was used to change continuous variables into dichotomous ones through the creation of appropriate cut-off values. A regression model based on the least absolute shrinkage and selection operator (LASSO) algorithm was used for dimensionality reduction, feature selection, and survivability prediction. We used receiver operating characteristic (ROC) analysis, calibration, and decision curve analysis (DCA) to evaluate the performance and clinical impact of the proposed model. Finally, a 10-fold cross-validation scheme was implemented to verify the model robustness.
We identified 22 potential variables from which 30 features were selected as survivability predictors. The model established based on the LASSO regression algorithm had shown discrimination with an area under curve (AUC) value of 0.690 (95% confidence interval: 0.557-0.823) and good calibration result. DCA demonstrated clinical applicability of the prognostic model when the intervention progressed to the possibility threshold of 2%. An average AUC value of 0.691 was obtained on the validation data.
Our results suggest that the proposed model can predict the mortality risk for patients after kidney transplants and could help kidney specialists choose kidney recipients with better prognosis.

Keywords: Kidney Transplantation; Predictive Value of Tests; Tissue Donors


Weekly Editorial

11 October 2021 : Editorial

Editorial: Multisystem Inflammatory Syndrome in Adults (MIS-A) and the Spectrum of COVID-19

Dinah V. Parums
Science Editor, Medical Science Monitor, International Scientific Information, Inc., Melville, NY, USA

DOI: 10.12659/MSM.935005

Med Sci Monit 2021; 27:e935005


13 October 2021 : Editorial

Editorial: Global Initiatives Support the Use and Regulation of Digital Health Technology During the COVID-...

Med Sci Monit In Press; DOI: 10.12659/MSM.935123  

11 October 2021 : Clinical Research

Clinical Features and Temporal Lung Radiographic Changes in 25 Patients Recovering from COVID-19 Pneumonia:...

Med Sci Monit In Press; DOI: 10.12659/MSM.933381  

08 September 2021 : Clinical Research

Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...

Med Sci Monit In Press; DOI: 10.12659/MSM.932788  

12 October 2021 : Review article

Silent Hypoxemia in Patients with COVID-19 Pneumonia: A Review

Med Sci Monit 2021; 27:e930776

In Press

13 Oct 2021 : Editorial

Editorial: Global Initiatives Support the Use and Regulation of Digital Health Technology During the COVID-...

Med Sci Monit In Press; DOI: 10.12659/MSM.935123  

13 Oct 2021 : Clinical Research

Endovascular Repair of Thoracic Aorta Injury: 17 Years of Single-Center Experience

Med Sci Monit In Press; DOI: 10.12659/MSM.934479  

11 Oct 2021 : Clinical Research

Challenges for Polish Community Pharmacists in Provision of Services to Immigrants and Non-Polish-Speakers ...

Med Sci Monit In Press; DOI: 10.12659/MSM.933678  

11 Oct 2021 : Clinical Research

Epidemiology of Birth Defects in Eastern China and the Associated Risk Factors

Med Sci Monit In Press; DOI: 10.12659/MSM.933782  

Most Viewed Current Articles

20 Mar 2020 : Clinical Research

Social Capital and Sleep Quality in Individuals Who Self-Isolated for 14 Days During the Coronavirus Diseas...

DOI :10.12659/MSM.923921

Med Sci Monit 2020; 26:e923921

15 Apr 2020 : Clinical Research

Psychological Impact and Coping Strategies of Frontline Medical Staff in Hunan Between January and March 20...

DOI :10.12659/MSM.924171

Med Sci Monit 2020; 26:e924171

05 May 2020 : Review article

An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development

DOI :10.12659/MSM.924700

Med Sci Monit 2020; 26:e924700

26 Apr 2020 : Clinical Research

Comparison of Prevalence and Associated Factors of Anxiety and Depression Among People Affected by versus P...

DOI :10.12659/MSM.924609

Med Sci Monit 2020; 26:e924609

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor eISSN: 1643-3750
Medical Science Monitor eISSN: 1643-3750