Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


eISSN: 1643-3750

Expression Profiles of the Phosphatase and Tensin Homolog (PTEN), CDH1, and CDH2 Genes, and the Cell Membrane Protein, CD133, in the Ishikawa Human Endometrial Adenocarcinoma Cell Line

Pingyin Lee, Xiaomao Li

Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (mainland)

Med Sci Monit 2019; 25:9829-9835

DOI: 10.12659/MSM.918787

Available online:

Published: 2019-12-21


BACKGROUND: This study aimed to investigate the expression profile of the phosphatase and tensin homolog (PTEN) gene, the cadherin genes, CDH1 and CDH2, and the cell membrane glycoprotein, CD133, in the Ishikawa human endometrial adenocarcinoma cell line.
MATERIAL AND METHODS: The Ishikawa endometrial carcinoma cell groups included cells transfected with the pLVX-puro lentiviral expression vector (the Ishikawa-puro group) and cells transfected with the pLVX-puro-PTEN lentiviral expression vector (the Ishikawa-PTEN group). The mRNA expression of the cadherin genes, CDH1 and CDH2, was detected by quantitative reverse transcription-polymerase chain reaction (RT-qPCR). The expression levels of the transmembrane glycoprotein CD133, a cancer stem cell marker, was detected by flow cytometry.
RESULTS: The expression of CDH1 and CDH2 mRNA in the Ishikawa-PTEN cells was lower than in the control cells. CD133 expression was lower in the Ishikawa-PTEN cells compared with the control cells.
CONCLUSIONS: This in vitro study showed that in Ishikawa endometrial carcinoma cells, downregulation of PTEN was associated with the expression of the CDH1 and CDH2 genes and upregulated expression of the cell membrane glycoprotein, CD133, which are associated with epithelial-mesenchymal transition (EMT) in malignancy. These findings support the need for further studies to investigate the potential role of PTEN in invasion and metastasis in endometrial carcinoma.

Keywords: Cadherins, Endometrial Neoplasms, Epithelial-mesenchymal transition, PTEN Phosphohydrolase