H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
12%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

Medical Science Monitor Basic Research
AmJCaseRep

Annals
ISI-Home

eISSN: 1643-3750

Catalpol Attenuates IL-1β Induced Matrix Catabolism, Apoptosis and Inflammation in Rat Chondrocytes and Inhibits Cartilage Degeneration

Yun-fu Zeng, Rong Wang, Yang Bian, Wen-sheng Chen, Lei Peng

Trauma Center, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China (mainland)

Med Sci Monit 2019; 25:6649-6659

DOI: 10.12659/MSM.916209

Available online: 2019-09-05

Published: 2019-09-05


#916209

BACKGROUND: Chondrocyte dysfunction and apoptosis are 2 major features during the progression of osteoarthritis. Catalpol, an iridoid glycoside isolated from the root of Rehmannia, is a valuable medication with anti-inflammatory, anti-oxidative, and anti-apoptotic effects in various diseases. However, whether catalpol protects against osteoarthritis has not been investigated.
MATERIAL AND METHODS: To assess the role of catalpol in osteoarthritis and the potential mechanism of action, chondrocytes were treated with interleukin (IL)-1ß and various concentrations of catalpol. Catabolic metabolism, apoptotic level and relative signaling pathway were measured by western blot, real-time polymerase chain reaction and immunofluorescence staining. Meanwhile, we assess the cartilage degeneration in an experimental rat model using Safranin O fast green staining and cartilage was graded according to the Osteoarthritis Research Society International (OARSI) system.
RESULTS: The results showed that catalpol prevented chondrocyte apoptotic level triggered by IL-1ß, suppressed the release of catabolic enzymes, and inhibited the degradation of extracellular matrix induced by IL-1ß. Catalpol also inhibited the nuclear factor kappa B (NF-kappaB) pathway, reduced the production of inflammatory cytokines (IL-6, tumor necrosis factor-alpha) in IL-1ß-treated chondrocytes, and partially reversed cartilage degeneration in the knee joint in animal model of osteoarthritis.
CONCLUSIONS: Our work suggested that catalpol treatment attenuates IL-1ß-induced inflammatory response and catabolism in rat chondrocytes by inhibiting the NF-kappaB pathway, suggesting the therapeutic potential of catalpol for the treatment of osteoarthritis.

Keywords: Anti-Inflammatory Agents, Osteoarthritis



Back