H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
12%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

Medical Science Monitor Basic Research
AmJCaseRep

Annals
ISI-Home

eISSN: 1643-3750

Proliferation of Ovarian Granulosa Cells in Polycystic Ovarian Syndrome Is Regulated by MicroRNA-24 by Targeting Wingless-Type Family Member 2B (WNT2B)

Zhong Yuanyuan, Wang Zeqin, Song Xiaojie, Liu Liping, Xiang Yun, Zhou Jieqiong

Department of Obstetrics and Gynecology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)

Med Sci Monit 2019; 25:4553-4559

DOI: 10.12659/MSM.915320

Available online: 2019-06-19

Published: 2019-06-19


#915320

BACKGROUND: Polycystic ovarian syndrome (PCOS) is a common endocrine disorder causing infertility among reproductive-age women. The molecular mechanisms underlying the development of PCOS are not well understood, and effective treatment options and therapeutic targets for PCOS are not available. This study was designed to investigate the role and therapeutic potential of miR-324 in PCOS.
MATERIAL AND METHODS: We used quantitative real time-polymerase chain reaction (qRT-PCR) to assess expression. Cell viability was determined by [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) assay. Acridine orange/ethidium bromide (AO/EB) and annexin V/PI staining were performed to examine apoptosis. Western blot analysis was used to determine protein expression.
RESULTS: Results showed that the expression of miR-324 was aberrantly and significantly downregulated in PCOS ovarian tissues and KGN ovarian granulosa cells. Nonetheless, ectopic expression of miR-324 expression inhibited the viability of KGN cells via induction of apoptotic cell death. In silico analysis showed Wingless-Type family member 2B (WNT2B) to be the target of miR-324, which was also validated by dual-luciferase reporter assay. We also found that the expression of WNT2B was upregulated in the KGN cells, and overexpression of miR-324 inhibited WNT2B expression. Similar to WNT2B overexpression, WNT2B silencing decreased the viability of the KGN. Furthermore, overexpression of WNTB2 in KGN partially reversed the growth-inhibitory effects of miR-324 overexpression.
CONCLUSIONS: miR-324 regulates the proliferation of KGN cells in PCOs and be essential in the management of PCOS.

Keywords: Polycystic Ovary Syndrome



Back