H-Index
75
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
18%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo



eISSN: 1643-3750

Human Umbilical Cord Wharton’s Jelly Derived Mesenchymal Stromal Cells May Attenuate Sarcopenia in Aged Mice Induced by Hindlimb Suspension

Quan-Quan Wang, Xiao-Ma Jing, Yan-Zhen Bi, Xiao-Fu Cao, Yu-Zhong Wang, Yan-Xin Li, Bao-Jun Qiao, Yun Chen, Yan-Lei Hao, Jing Hu

(Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland))

Med Sci Monit 2018; 24:9272-9281

DOI: 10.12659/MSM.913362

Published: 2018-12-20


BACKGROUND: Since the use of human umbilical cord Wharton’s Jelly derived mesenchymal stromal cells (hWJ-MSCs) to treat sarcopenia has not been explored, we studied the effects of hWJ-MSCs in aged male C57BL/6J mice with sarcopenia induced by hindlimb suspension, and explored the potential mechanism.
MATERIAL AND METHODS: Hindlimb suspension was used to induce sarcopenia in 24-month-old C57BL/6J mice and green fluorescent protein-tagged hWJ-MSCs and controls were transplanted into mice via tail vein or local intramuscular injection. After hWJ-MSC transplantation, changes in whole body muscle strength and endurance, gastrocnemius muscle weight and myofiber cross-sectional area (CSA) were studied. Proliferation of skeletal muscle stem cell, apoptosis, and chronic inflammation were also investigated.
RESULTS: We demonstrated that whole body muscle strength and endurance, gastrocnemius muscle mass, and CSA were significantly increased in hWJ-MSC-transplanted mice than in controls (P<0.05). In hWJ-MSC-transplanted mice, apoptotic myonuclei was reduced, and BrdU and Pax-7 expression indices of gastrocnemius muscles were increased (P<0.05). Tumor necrosis factor (TNF)-α and interleukin (IL)-6 were downregulated, and IL-4 and IL-10 were upregulated (P<0.05).
CONCLUSIONS: hWJ-MSCs may ameliorate sarcopenia in aged male C57BL/6J mice induced by hindlimb suspension, and this may be via activation of resident skeletal muscle satellite cells, reduction of apoptosis, and less chronic inflammation.

Keywords: Apoptosis, Hindlimb Suspension, Inflammation, mesenchymal stromal cells, sarcopenia



Back