H-Index
75
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
21%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo



eISSN: 1643-3750

Rho GTPase Activating Protein 24 (ARHGAP24) Regulates the Anti-Cancer Activity of Sorafenib Against Breast Cancer MDA-MB-231 Cells via the Signal Transducer and Activator of Transcription 3 (STAT3) Signaling Pathway

Xianping Dai, Feng Geng, Jiale Dai, Mengshun Li, Ming Liu

(School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China (mainland))

Med Sci Monit 2018; 24:8669-8677

DOI: 10.12659/MSM.911394

Published: 2018-11-30


BACKGROUND: STAT3 has emerged as a novel potential target for sorafenib, a multikinase inhibitor, in the context of cancer therapy. ARHGAP24 is a Rac-specific Rho GTPase-activating protein (Rho GAP), which can convert Rho GTPases to an inactive state. It has been proved to be an oncosuppressor protein in renal cancer. In the present study, we investigated its anti-cancer effect in breast cancer (BC).
MATERIAL AND METHODS: Quantitative real-time PCR (qRT-PCR) and Western blot analysis were performed to detect the expression of ARHGAP24 in clinical tissue samples. Then, BC MDA-MB-231 cells were virally transduced with ARHGAP24 silencing or overexpression lentiviral vectors in the absence or presence of sorafenib. Cell viability and metastatic ability were evaluated by using the Cell Counting Kit-8 (CCK-8) and Transwell assays. Proteins belonging to the STAT3 pathway were detected by Western blot.
RESULTS: ARHGAP24 decreased in BC tissues compared with the adjacent normal tissues. Forced expression of ARHGAP24 and sorafenib treatment significantly suppressed the viability, migration, and invasion of MDA-MB-231 cells. Conversely, elimination of the endogenous ARHGAP24 with shRNA promoted cell viability, migration, and invasion. The phosphorylation of STAT3 and the expression of MMP-2 and MMP-9 were attenuated by ARHGAP24 ectopic expression and sorafenib treatment. Furthermore, forced expression of ARHGAP24 significantly enhanced sorafenib-induced decrease of cell viability, migration, and invasion of MDA-MB-231 cells, while elimination of the endogenous ARHGAP24 with shRNA inhibited it.
CONCLUSIONS: ARHGAP24 can suppress the development of MDA-MB-231 cells via the STAT3 signaling pathway, and sorafenib inhibits cell viability, migration, invasion, and STAT3 activation in MDA-MB-231 cells through ARHGAP24.

Keywords: Cell Migration Assays, Cell Survival, STAT3 Transcription Factor



Back