Scimago Lab
powered by Scopus
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST


Medical Science Monitor Basic Research


eISSN: 1643-3750

3,5-Dicaffeoylquinic Acid Disperses Aspergillus Fumigatus Biofilm and Enhances Fungicidal Efficacy of Voriconazole and Amphotericin B

Jing Luo, Ke Wang, Geng S. Li, Dan Q. Lei, Yuan J. Huang, Wei D. Li, Yi Q. Chen, Jin L. Kong

Pulmonary and Critical Care Medicine Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)

Med Sci Monit 2018; 24: LBR427-437

DOI: 10.12659/MSM.908068

Available online: 2018-01-22

Published: 2018-01-22


BACKGROUND: The aim of this study was to evaluate the dispersal effects of 3,5-dicaffeoylquinic acid (3,5-DCQA) against the preformed biofilm of Aspergillus fumigatus and to investigate its potential mechanism.
MATERIAL AND METHODS: Aspergillus fumigatus biofilms of laboratory strain AF293 and clinical strain GXMU04 were generated in 24- or 96-well polystyrene microtiter plates in vitro. Crystal violet assay and XTT reduction assay were performed to evaluate the effects of 3,5-DCQA on biofilm biomass, extracellular matrix, and metabolic activity alteration of cells in biofilms. Real-time PCR was performed to quantify the expression of hydrophobin genes. The cytotoxicity of 3,5-DCQA on human erythrocytes was evaluated by a hemolytic assay.
RESULTS: The results indicated that 3,5-DCQA in subminimum inhibitory concentrations (256 to 1024 mg/L) elicited optimal A. fumigatus biofilm dispersion activity and improved the efficacy of VRC and AMB in minimal fungicidal concentrations (MFCs) to combat fungal cells embedded in biofilms. The results of scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM) revealed 3,5-DCQA facilitated the entry of antifungal agents into the A. fumigatus biofilm through eliminating the hydrophobic extracellular matrix (ECM) without affecting fungal growth. Real-time PCR indicated that 3,5-DCQA down-regulated the expression of hydrophobin genes. Hemolytic assay confirmed that 3,5-DCQA exhibited a low cytotoxicity against human erythrocytes.
CONCLUSIONS: Subminimum inhibitory concentrations of 3,5-DCQA can disperse A. fumigatus biofilm and enhance fungicidal efficacy of VRC and AMB through down-regulating expression of the hydrophobin genes. The study indicated the anti-biofilm potential of 3,5-DCQA for the management of A. fumigatus biofilm-associated infection.

Keywords: amphotericin B, Aspergillus fumigatus, Biofilms