H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
12%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo

Medical Science Monitor Basic Research
AmJCaseRep

Annals
ISI-Home

eISSN: 1643-3750

Effects of Shock Waves on Expression of IL-6, IL-8, MCP-1, and TNF-α Expression by Human Periodontal Ligament Fibroblasts: An In Vitro Study

Zhiyu Cai, Frank Falkensammer, Oleh Andrukhov, Jiang Chen, Rainer Mittermayr, Xiaohui Rausch-Fan

School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, China (mainland)

Med Sci Monit 2016; 22:914-921

DOI: 10.12659/MSM.897507

Available online: 2016-03-20

Published: 2016-03-20


#897507

BACKGROUND: Extracorporeal shock wave therapy (ESWT) can modulate cell behavior through mechanical information transduction. Human periodontal ligament fibroblasts (hPDLF) are sensible to mechanical stimulus and can express pro-inflammatory molecules in response. The aim of this study was to evaluate the impacts of shock waves on interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemotactic protein 1 (MCP-1), and tumor necrosis factor-alpha (TNF-α) expression by hPDLF.
MATERIAL AND METHODS: After being treated by shock waves with different parameters (100–500 times, 0.05–0.19 mJ/mm2), cell viability was tested using CCK-8. IL-6, IL-8, MCP-1, and TNF-α gene expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and IL-6 and IL-8 protein was measured by enzyme-linked immunosorbent assay (ELISA) at different time points.
RESULTS: Shock waves with the parameters used in this study had no significant effects on the viability of hPDLF. A statistical inhibition of IL-6, IL-8, MCP-1, and TNF-α expression during the first few hours was observed (P<0.05). Expression of IL-8 was significantly elevated in the group receiving the most pulses of shock wave (500 times) after 4 h (P<0.05). At 8 h and 24 h, all treated groups demonstrated significantly enhanced IL-6 expression (P<0.05). TNF-α expression in the groups receiving more shock pulses (300, 500 times) or the highest energy shock treatment (0.19 mJ/mm2) was statistically decreased (P<0.05) at 24 h.
CONCLUSIONS: Under the condition of this study, a shock wave with energy density no higher than 0.19 mJ/mm2 and pulses no more than 500 times elicited no negative effects on cell viability of hPDLF. After a uniform initial inhibition impact on expression of inflammatory mediators, a shock wave could cause dose-related up-regulation of IL-6 and IL-8 and down-regulation of TNF-α.

Keywords: Chemokine CCL2 - metabolism, Cell Survival - genetics, Adolescent, Fibroblasts - metabolism, Gene Expression Regulation, High-Energy Shock Waves, Interleukin-6 - metabolism, Interleukin-8 - metabolism, Periodontal Ligament - cytology, Time Factors, Tumor Necrosis Factor-alpha - metabolism



Back