H-Index
79
Scimago Lab
powered by Scopus
JCR
Clarivate
Analytics
16%
Acceptance
Rate
call: +1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Logo



eISSN: 1643-3750

Exenatide Alters Gene Expression of Neural Cell Adhesion Molecule (NCAM), Intercellular Cell Adhesion Molecule (ICAM), and Vascular Cell Adhesion Molecule (VCAM) in the Hippocampus of Type 2 Diabetic Model Mice

Esen Gumuslu, Naci Cine, Merve Ertan Gökbayrak, Oguz Mutlu, Ipek Komsuoglu Celikyurt, Guner Ulak

Department of Genetics, Kocaeli University, Medical Faculty, Kocaeli, Turkey

Med Sci Monit 2016; 22:2664-2669

DOI: 10.12659/MSM.897401

Available online:

Published: 2016-07-28


BACKGROUND: Glucagon-like peptide-1 (GLP-1), a potent and selective agonist for the GLP-1 receptor, ameliorates the symptoms of diabetes through stimulation of insulin secretion. Exenatide is a potent and selective agonist for the GLP-1 receptor. Cell adhesion molecules are members of the immunoglobulin superfamily and are involved in synaptic rearrangements in the mature brain.
MATERIAL AND METHODS: The present study demonstrated the effects of exenatide treatment (0.1 µg/kg, subcutaneously, twice daily for 2 weeks) on the gene expression levels of cell adhesion molecules, neural cell adhesion molecule (NCAM), intercellular cell adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM) in the brain tissue of diabetic BALB/c male mice by real-time quantitative polymerase chain reaction (PCR). Diabetes was induced by streptozotocin/nicotinamide (STZ-NA) injection to male mice.
RESULTS: The results of this study revealed that hippocampal gene expression of NCAM, ICAM, and VCAM were found to be up-regulated in STZ-NA-induced diabetic mice compared to those of controls. A significant decrease in the gene expression levels of NCAM, ICAM, and VCAM were determined after 2 weeks of exenatide administration.
CONCLUSIONS: Cell adhesion molecules may be involved in the molecular mechanism of diabetes. Exenatide has a strong beneficial action in managing diabetes induced by STZ/NA by altering gene expression of NCAM, ICAM, and VCAM.

Keywords: Diabetes Mellitus, Genetic Association Studies, Mice, Inbred BALB C



Back