Logo Medical Science Monitor Basic Research

Call: 1.631.470.9640
Mon-Fri 10 am - 2 pm EST

Contact Us

Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research Logo Medical Science Monitor Basic Research

02 April 2013

Phosphorylated CaMKII levels increase in rat central nervous system after large-dose intravenous remifentanil

Qiang WangBCEF, Xin ZhaoBCEF, Shuren LiADFG, Song HanBC, Zhifeng PengBC, Junfa LiADEFG

DOI: 10.12659/MSMBR.883866

Med Sci Monit Basic Res 2013; 19:118-125

Abstract

BACKGROUND: Postoperative remifentanil-induced pain sensitization is common, but its molecular mechanism remains unclear. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been shown to have a critical role in morphine-induced hyperalgesia. This study was designed to determine how CaMKII phosphorylation and protein expression levels change in the central nervous system of rats with remifentanil-induced hyperalgesia.

MATERIAL AND METHODS: Male Sprague-Dawley® rats were exposed to large-dose (bolus of 6.0 µg/kg and 2.5 µg/kg/min for 2 hours) intravenous remifentanil to induce post-transfusion hyperalgesia. Levels of phosphorylated CaMKII (P-CaMKII) and total protein of CaMKII (T-CaMKII) were determined at different post-transfusion times by Western blot and immunostaining and were compared with controls.

RESULTS: P-CaMKII increased significantly (P<0.05) at 0, 0.5, and 2 hours. However, P-CaMKII at 5 to 24 hours and T-CaMKII at 0 to 24 hours post-transfusion did not change significantly in rats’ spinal dorsal horn, hippocampus, or primary somatosensory (S1) cortex (n=6 per group). Similarly, immunostaining showed stronger P-CaMKII immunoreactants (P<0.05) and more P-CaMKII- positive cells (P<0.05) in the spinal dorsal horn, CA1 region of the hippocampus, and S1 cortex of rats 0.5 hours post-transfusion compared with the control group treated with 0.9% sodium chloride (n=3 per group).

CONCLUSIONS: These results suggest that a temporary rise in the P-CaMKII level in the central nervous system may correlate with remifentanil-induced pain sensitization in the postoperative period.

Keywords: Morphine - pharmacology, Infusions, Intravenous, Hyperalgesia - drug therapy, Hippocampus - drug effects, Cerebral Cortex - drug effects, Central Nervous System - metabolism, Calcium-Calmodulin-Dependent Protein Kinase Type 2 - metabolism, Brain Mapping - methods, Analgesics, Opioid - pharmacology, Phosphorylation, Piperidines - pharmacology, Spinal Cord - drug effects, Time Factors

Add Comment 0 Comments

Most Viewed Current Articles

15 Jun 2022 : Clinical Research  

Evaluation of Apical Leakage After Root Canal Obturation with Glass Ionomer, Resin, and Zinc Oxide Eugenol ...

DOI :10.12659/MSMBR.936675

Med Sci Monit Basic Res 2022; 28:e936675

07 Jul 2022 : Laboratory Research  

Cytotoxicity, Apoptosis, Migration Inhibition, and Autophagy-Induced by Crude Ricin from Ricinus communis S...

DOI :10.12659/MSMBR.936683

Med Sci Monit Basic Res 2022; 28:e936683

01 Jun 2022 : Laboratory Research  

Comparison of Sealing Abilities Among Zinc Oxide Eugenol Root-Canal Filling Cement, Antibacterial Biocerami...

DOI :10.12659/MSMBR.936319

Med Sci Monit Basic Res 2022; 28:e936319

08 Dec 2022 : Original article  

Use of Estimated Glomerular Filtration Rate and Urine Albumin-to-Creatinine Ratio Based on KDIGO 2012 Guide...

DOI :10.12659/MSMBR.938176

Med Sci Monit Basic Res 2022; 28:e938176

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor Basic Research eISSN: 2325-4416
Medical Science Monitor Basic Research eISSN: 2325-4416