Logo MSM

Call: +1.631.470.9640
Mon - Fri 10:00 am - 02:00 pm EST

Contact Us

Logo MSM Logo MSM Logo MSM

13 September 2021: Editorial

Editorial: The First Monoclonal Antibody Vaccine to Prevent Malaria Heralds a New Era of Malaria Vaccines to the Circumsporozoite Protein (PfCSP)

Dinah V. Parums

DOI: 10.12659/MSM.934676

Med Sci Monit 2021; 27:e934676


ABSTRACT: Malaria affects more than 3 billion people in 95 countries, with an estimated mortality rate of 400,000 per year. The female Anopheles spp mosquito most commonly transmits malaria, and the main burden of disease is due to Plasmodium falciparum. The most abundant antigen on the sporozoite surface is the Plasmodium falciparum circumsporozoite protein (PfCSP). PfCSP is required for parasite development and attachment to host hepatocytes. The first potential protein vaccine, RTS,S/ASO1, consists of a recombinant fusion antigen based on PfCSP. Initial findings from a phase 3 trial of RTS,S/ASO1 were promising but resulted in recommendations for further evaluation in large-scale trials. R21, a circumsporozoite protein-based vaccine, combined with an adjuvant, Matrix-M (MM), was recently evaluated in a phase 2 investigational study in children between 5-17 months of age in Burkina Faso. The R21/MM candidate vaccine resulted in high titers of malaria-specific antibodies. On August 26, 2021, the findings from a phase 1 trial on a new monoclonal antibody to PfCSP, CIS43LS, showed that a single dose of the CIS43LS monoclonal antibody resulted in protection against malaria. These new findings have implications for the seasonal control of malaria in endemic regions and a possible future role in public health strategies to eliminate malaria. This Editorial aims to provide the background to developing and evaluating the new malaria vaccines that target PfCSP, including the first monoclonal antibody vaccine to malaria.

Keywords: Editorial, Plasmodium falciparum, Malaria, monoclonal antibody, vaccine


The findings from this first clinical trial of a monoclonal antibody to prevent malaria have resulted in several major advances in preventing this disease. First, the effectiveness of the CIS43LS monoclonal antibody that targets the NPN junctional region of the Plasmodium falciparum circumsporozoite protein supports the inclusion of this site as a target for future next-generation vaccines. Also, this clinical trial is the first to demonstrate the potential for passive immune prevention of malaria. A single dose of the CIS43LS monoclonal antibody resulted in protection against malaria, which has implications for the seasonal control of malaria in endemic regions and a possible role in malaria elimination public health strategies. Future developments in malaria vaccines may identify more effective monoclonal antibodies, with new dosing regimens and new application routes, with expanded use for vulnerable populations in endemic geographical areas.


1. :: Guidelines for Malaria, 2021; (WHO/UCN/GMP/2021.01 Rev.1)

2. :: Compendium of WHO malaria guidance: Prevention, diagnosis, treatment, surveillance and elimination, 2019

3. :: Guidelines for Clinicians (United States)

4. Mace KE, Lucchi NW, Tan KR: Malaria surveillance – United States, 2017: MMWR Surveill Summ, 2021; 70; 1-35

5. Breman JG: Eradicating malaria: Sci Prog, 2009; 92; 1-38

6. Breman JG:: World Malaria Report, 2008

7. Breman JG:: Global Technical Strategy for Malaria 2016–2030, 2021

8. Rabinovich RN, Drakeley C, Djimde AA: malERA: An updated research agenda for malaria elimination and eradication: PLoS Med, 2017; 14; e1002456

9. Kiszewski AE, Teklehaimanot A: A review of the clinical and epidemiologic burdens of epidemic malaria: Am J Trop Med Hyg, 2004; 71; 128

10. Breman JG, Plowe CV: A malaria vaccine for control: More progress: J Infect Dis, 2009; 200; 317

11. Laurens MB: RTS,S/AS01 vaccine (Mosquirix™): An overview: Hum Vaccin Immunother, 2020; 16(3); 480-89

12. Draper SJ, Higgins MK: A new site of attack for a malaria vaccine: Nat Med, 2018; 24(4); 382-83

13. Agnandji ST, Asante KP, Lyimo J: Evaluation of the safety and immunogenicity of the RTS,S/AS01E malaria candidate vaccine when integrated in the expanded program of immunization: J Infect Dis, 2010; 202; 1076

14. Agnandji ST, Lell B: A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants: N Engl J Med, 2012; 367; 2284

15. Olotu A, Fegan G, Wambua J: Four-year efficacy of RTS,S/AS01E and its interaction with malaria exposure: N Engl J Med, 2013; 368; 1111

16. Olotu A, Fegan G, Wambua J: Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: Final results of a phase 3, individually randomised, controlled trial: Lancet, 2015; 386; 31

17. Neafsey DE, Juraska M, Bedford T: Genetic diversity and protective efficacy of the RTS,S/AS01 Malaria vaccine: N Engl J Med, 2015; 373; 2025

18. Neafsey DE, Juraska M, Bedford T: Malaria vaccine: WHO position paper, January 2016 – Recommendations: Vaccine, 2018; 36(25); 3576-77

19. Datoo MS, Natama MH, Somé A: Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: A randomised controlled trial: Lancet, 2021; 397(10287); 1809-18

20. Murugan R, Scally SW, Costa G: Evolution of protective human antibodies against Plasmodium falciparum circumsporozoite protein repeat motifs: Nat Med, 2020; 26(7); 1135-45

21. Kisalu NK, Idris AH, Weidle C: A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite: Nat Med, 2018; 24(4); 408-16

22. Kisalu NK, Pereira LD, Ernste K: Enhancing durability of CIS43 monoclonal antibody by Fc mutation or AAV delivery for malaria prevention: JCI Insight, 2021; 6(3); e143958

23. Gaudinski MR, Berkowitz NM, Idris AH: A Monoclonal antibody for Malaria prevention: N Engl J Med, 2021; 385(9); 803-14

Coronavirus/Covid 19

08 September 2021 : Clinical Research

Acceptance of COVID-19 Vaccination and Its Associated Factors Among Cancer Patients Attending the Oncology ...

Med Sci Monit In Press; DOI: 10.12659/MSM.932788  

16 July 2021 : Review article

Silent Hypoxemia in Patients with COVID-19 Pneumonia: A Review

Med Sci Monit In Press; DOI: 10.12659/MSM.930776  

09 July 2021 : Database Analysis

A Simple Clinical Prediction Tool for COVID-19 in Primary Care with Epidemiology: Temperature-Leukocytes-CT...

Med Sci Monit In Press; DOI: 10.12659/MSM.931467  

In Press

20 Sep 2021 : Clinical Research

Automated Boluses and Delayed-Start Timers Prolong Perineural Local Anesthetic Infusions and Analgesia Foll...

Med Sci Monit In Press; DOI: 10.12659/MSM.933190  

16 Sep 2021 : Clinical Research

A Retrospective Evaluation of Operative and Postoperative Outcomes in Patients with Spinal Metastases from ...

Med Sci Monit In Press; DOI: 10.12659/MSM.932995  

15 Sep 2021 : Clinical Research

Polish Medical Air Rescue Interventions Concerning Pregnant Women in Poland: A 10-year Retrospective Analysis

Med Sci Monit In Press; DOI: 10.12659/MSM.933029  

15 Sep 2021 : Clinical Research

A Prospective Single-Center Study of the Effects of Repetitive Transcranial Magnetic Stimulation at 2-Week ...

Med Sci Monit In Press; DOI: 10.12659/MSM.933017  

Most Viewed

20 Mar 2020 : Clinical Research

Social Capital and Sleep Quality in Individuals Who Self-Isolated for 14 Days During the Coronavirus Diseas...

DOI :10.12659/MSM.923921

Med Sci Monit 2020; 26:e923921

15 Apr 2020 : Clinical Research

Psychological Impact and Coping Strategies of Frontline Medical Staff in Hunan Between January and March 20...

DOI :10.12659/MSM.924171

Med Sci Monit 2020; 26:e924171

05 May 2020 : Review article

An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development

DOI :10.12659/MSM.924700

Med Sci Monit 2020; 26:e924700

26 Apr 2020 : Clinical Research

Comparison of Prevalence and Associated Factors of Anxiety and Depression Among People Affected by versus P...

DOI :10.12659/MSM.924609

Med Sci Monit 2020; 26:e924609

Your Privacy

We use cookies to ensure the functionality of our website, to personalize content and advertising, to provide social media features, and to analyze our traffic. If you allow us to do so, we also inform our social media, advertising and analysis partners about your use of our website, You can decise for yourself which categories you you want to deny or allow. Please note that based on your settings not all functionalities of the site are available. View our privacy policy.

Medical Science Monitor eISSN: 1643-3750
Medical Science Monitor eISSN: 1643-3750