eISSN: 1643-3750


Get your full text copy in PDF

Expression of Acid-Sensing Ion Channels in Renal Tubular Epithelial Cells and Their Role in Patients with Henoch-Schönlein Purpura Nephritis

Li-ping Yuan, Yan Bo, Zhang Qin, Hua Ran, Wang Li, Yu-fei Li, Gui Ming

(Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland))

Med Sci Monit 2017; 23:1916-1922

DOI: 10.12659/MSM.904132

BACKGROUND: Acid-sensing ion channels (ASICs) are ligand-gated cation channels activated by extracellular protons. However, the role of ASICs in kidney diseases remains uncertain. This study investigated ASICs expression in kidney tissues and their role in the development of Henoch-Schönlein purpura nephritis (HSPN).
MATERIAL AND METHODS: The expression of ASIC subunits was examined by immunochemical techniques in the kidney tissue from HSPN patients. Acid-induced ASICs expression in cultured renal tubular epithelial cells was determined by quantitative RT-PCR analysis. The expression of K7 and K18 protein in renal tubular epithelial cells was used to evaluate acid-induced cell injury. In addition, we observed the effect of blocking ASICs on acid-induced cell injury to assess the role of ASICs in renal tubular epithelial cell injury.
RESULTS: The results showed that ASIC1, ASIC2, and ASIC3 proteins were obviously expressed in renal tubular cells from HSPN patients. ASIC1 expression and 24-h urine protein level were higher in the pathological grade ISKD III group than in the ISKD II group. ASIC1, ASIC2, and ASIC3 mRNA, and K7 and K18 protein expression in cultured renal tubular epithelial cells were increased when exposed to pH 6.5. K7 and K18 protein expression was closely related to ASIC1 expression, and ASICs blockers reduced K7 and K18 protein expression in tubular epithelial cells.
CONCLUSIONS: These findings suggest ASICs are most highly expressed in renal tubular cells of HSPN patients, which is closely related to renal tubular injury. ASICs might be involved in the development of HSPN.

This paper has been published under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
I agree